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Effective interventions that provide obvious neuroprotection are currently fairly limited.

Glucagon-like peptide-1 (GLP-1), an enhancer of insulin production with a trophic effect on
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β cells in the islets, has been found to be trophic for neuronal cells. Alogliptin benzoate

(AGL), a selective inhibitor of dipeptidylpeptidase-4 (DPP-4) functioning as a long-acting

agonist of GLP-1, is in clinical use worldwide for patients with diabetes mellitus type 2. To

clarify whether administration of AGL, independent of the insulinotropic effect, protects

the brain against focal ischemia, we investigated the effect of AGL on the development of

cerebral infarction in non-diabetic normal mice. Male C57BL/6J mice were administered

AGL (7.5, 15, or 30 μg) once a day for three weeks by intragastric gavage. After the induction

of temporary focal ischemia, volumes of infarcted lesions and neurological deficits were

analyzed at 24 h (acute phase) and seven days (chronic phase). In the acute phase,

significant reductions were observed in the volumes of infarcted lesions (p¼0.009), and

in the severity of neurological deficits (p¼0.004), in the group treated with 15 μg of

alogliptin benzoate, but not the 7.5 or 30 μg-treated groups. This significant reduction in

volumes of infarcted lesions persisted into the chronic phase. At the end of the AGL

treatment; before the induction of ischemia, the levels of brain-derived neurotrophic factor

(BDNF), a potent neuroprotectant in the brain, were elevated in the cortex (p¼0.008), or in

the whole forebrain (p¼0.023). AGL could be used as a daily neuroprotectant or an

enhancer of BDNF production aiming to attenuate cerebral injuries, for the growing

number of people who have the risk of ischemic stroke.
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1. Introduction

For the growing number of people who have the risk of, or
experienced cerebral infarction or TIA (Weimar et al., 2010;
Hata et al., 2005), development of a novel compound to
protect neurons from focal ischemia, or even to promote
cerebral repair, is urgently required. In the incretin family,
glucagon-like peptide-1 (GLP-1), or insulinotropic secreted
from L cells in the gastrointestinal tract as a response to food
ingestion (Cefalu, 2010; Rizzo et al., 2009), acts as a trophic
factor for β cells in the islets by enhancing insulin biosynth-
esis/release and their proliferation (Turton et al., 1996). In
addition to the β cell-trophic/insulinotropic effect, GLP-1
exerts a neurotrophic effect in the brain (McClean et al.,
2010; Perry et al., 2002). Indeed, GLP-1 can enter the brain; the
GLP-1 receptors (GLP-1R) is expressed widely in the central
nervous system (During et al., 2003; Turton et al., 1996); and
the activation of GLP-1R was found to improve cognitive
performance (Li et al., 2010a; During et al., 2003). However,
once secreted into the blood, GLP-1 is rapidly degraded and
inactivated following release of the intrinsic antagonizing
enzyme, dipeptidylpeptidase-4 (DPP-4).

Exendin-4 (Ex-4), a long-acting analog of GLP-1 (a GLP-R
agonist), developed for intravenous treatment of type II
diabetes mellitus (DM-2), demonstrated a neuroprotective
property in vivo after cerebro-ventricular administration
(Li et al., 2009). Ex-4 also exerted a neurotrophic property
in vitro (Li et al., 2010c). Moreover, in a transgenic mouse
model of Alzheimer's disease (AD) combined with streptozocin-
induced DM-2, a continuous subcutaneous injection of Ex-4
reduced the levels of amyloid-β (Aβ) protein in the brain
(Li et al., 2010b).

Alogliptin benzoate (AGL), a potent and highly selective
inhibitor of DPP-4, developed for once-daily oral treatment of
DM-2, demonstrated a lower incidence of unfavorable side
effects such as hypoglycemia and hyperphagia, compared to
previous drugs (Moritoh et al., 2008; Feng et al., 2007).
Although treatment with AGL for a prolonged period in DM-
2 patients is expected to protect β cells and prevent athero-
sclerotic vascular damage, it is unknown whether AGL,
independent of its insulinotropic properties, protects neurons
against lethal ischemia. To clarify whether AGL acts as a
neuroprotectant, we studied the effect of AGL given per os
every day for three weeks prior to the insult, or once
following the insult, on the development of cerebral infarc-
tion after the induction of ischemic stroke in non-diabetic
normal mice.

Treatment with a DPP-4 inhibitor, vildagliptin improved
the expression of genes and proteins responsible for insulin
secretion, indicating that DPP-inhibitors may affect glucose
metabolism-related gene and protein expression (Akarte
et al., 2012). To clarify whether brain-derived neurotrophic
factor (BDNF) levels are affected by AGL, we also studied
alterations in BDNF levels in the brain after chronic, prophy-
lactic treatment with AGL.

BDNF, the most abundant neurotrophin in the brain,
stimulates neural migration; promote neuronal differentia-
tion; induce neurite outgrowth; enhance synapse formation,
learning and memory, and neuronal survival; lower blood
glucose levels; improve glucose/lipid metabolism, and reduce
appetite and body weight (Yanamoto et al., 2000b, 2004;
Nakagawa et al., 2003; Hofer and Barde, 1988). Increase in
intracerebral BDNF levels, prior to the insult, induces toler-
ance to focal cerebral ischemia, and improve the functional
outcome in rodent models of ischemic stroke (Nakajo et al.,
2008; Galloway et al., 2008; Yanamoto et al., 2000a, 2000b,
2004, 2008). In contrast, a genetic decrease in BDNF levels in
the brain increased volumes of infarcted lesions and wor-
sened learning and memory (Yamamoto et al., 2011). Inter-
estingly, BDNF levels in the brain were decreased in a mouse
model of DM-2, and neurons from these animals were more
vulnerable against hypoxia in vitro, compared to normal
neurons (Navaratna et al., 2011).
2. Results

No animal died before the evaluation of volumes of infarcted
lesions in the acute and chronic phase studies. During the
operation, the physiological parameters of mice were stable
and regulated within the normal range. There were no
significant differences in body temperature, heart rate and
mean arterial blood pressure between vehicle- and the three
different AGL-treated groups during the operative period
(Table 1). No significant differences were observed in body
weight or blood glucose levels at the end of the treatment,
with blood glucose levels of 170722 mg/dL vs. 180723 mg/dL
in the vehicle- and AGL-treated groups respectively (p¼0.234).
Body weight was 23.571.1 g in the vehicle-treated vs.22.970.8
in the AGL-treated group (p¼0.117).
2.1. The effect of prophylactic AGL treatment on infarcted
lesion volumes and neurological deficits

On analysis of the volumes of infarcted lesions, a significant
reduction was observed in Group III (medium dose), as
compared to group I (vehicle) (Fig. 1A and B). There was no
significant difference in the edema index between the groups
(data not shown).

On assessment of neurological function in the acute phase
(Fig. 1C), the SND score in group III was significantly smaller
compared to group I (Mann–Whitney test), with no other
differences.

In the chronic phase, the volume of infarcted lesion in
group II (medium dose) was significantly smaller compared
with those in group I (vehicle) (Fig. 2A and B). The SND score
was significantly smaller in group II during the first two days,
but with gradual improvements in both groups, the difference
diminished.
2.2. Alterations in regional cerebral blood flow (rCBF) after
the prophylactic treatment with AGL

There was no significant difference in the rCBF between the
AGL (medium dose) and vehicle groups during ischemia
(Fig. 3). After reperfusion, rCBF levels remained higher in
the AGL group, achieving statistical significance during the
later phase.



Table 1 – Physiological parameters before, during, and after focal ischemia. Data are expressed as the mean7S.D.

Pre-ischemia Intra-ischemia Post-ischemia

Vehicle group
Systolic BP (mm Hg) 77.075.5 77.0711.0 80.077.9

Mean BP (mm Hg) 54.077.6 56.0712.0 53.9711.4

Diastolic BP (mm Hg) 41.679.6 45.7714.0 42.3713.6

Heart rate (beat/min) 408765.7 448769.0 462774.0

Temperature (1C) 36.770.16 36.870.17 37.070.16

Low-dose AGL group
Systolic BP (mm Hg) 80.0711.0 79.0710.0 79.077.5

Mean BP (mm Hg) 52.0712.0 50.0712.0 47.9710.9

Diastolic BP (mm Hg) 37.8713.7 35.6713.3 31.9713.6

Heart rate (beat/min) 412785.8 421795.0 428798.0

Temperature (1C) 36.770.14 36.970.19 37.170.15

Medium-dose AGL group
Systolic BP(mm Hg) 80.0711.0 78.079.6 77.0711.0

Mean BP(mm Hg) 51.0711.0 50.0710.0 49.1710.1

Diastolic BP(mm Hg) 35.7713.7 36.2711.8 32.879.5

Heart rate(beat/min) 455789.4 448766.0 458772.0

Temperature(1C) 36.970.22 37.070.13 37.170.19

High-dose AGL group
Systolic BP (mm Hg) 78.078.6 76.078.1 76.076.5

Mean BP (mm Hg) 53.0711.0 51.078.3 52.077.4

Diastolic BP (mm Hg) 41.2713.3 38.5710.4 40.479.4

Heart rate (beat/min) 411774.9 412786.0 405755.0

Temperature (1C) 36.870.13 37.170.08 37.170.17
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2.3. Determination of BDNF levels after the prophylactic
AGL treatment

The BDNF levels in the whole forebrain were significantly
elevated in the AGL group compared with the vehicle group
(Fig. 4). In the forebrain, there were significant elevations in
the cortex, and the thalamostriatum. The BDNF levels in the
hippocampus did not achieve a significant difference.

2.4. The effect of post hoc AGL treatment on volumes of
infarcted lesions and neurological deficits

On analysis of the volumes of infarcted lesions in the acute
phase (Fig. 5A), the reduction in the AGL (medium dose)-
treated group did not achieve a significant difference, as
compared with vehicle alone (Fig. 5B). There was no signifi-
cant difference in the edema index between the groups (data
not shown). In the chronic phase, the volumes of infarcted
lesions were not different between the groups (Fig. 5B). On
assessment of neurological function, the SND score was not
different between the groups, for seven days after ischemia
(Fig. 5C).
3. Discussion

It was demonstrated that chronic, prophylactic treatment
with AGL increased BDNF levels in the brain, and protected
the brain against ischemic stroke. The pharmacokinetics and
the efficacy profiles of AGL on glucose/insulin/glucagon levels
in plasma after acute or chronic administration have been
extensively studied in diabetic and normal animals (Moritoh
et al., 2008; Lee et al., 2008), with a mean half-life of 3.6 h in
normal rats, and 28 h in normal monkeys. After a single
gavage (0.5 mg/kg) of AGL in normal rats, maximum inhibi-
tion (90%) of DPP-4 occurred at 30 min, which declined to 40%
at 12 h, and disappeared within 24 h (Lee et al., 2008). We
discontinued the treatment 24 h before the onset of ischemia
to exclude, or at least minimize, any direct effects of AGL on
cerebral ischemia.

It is well known that hyperglycemia is an exacerbating
factor in ischemic stroke in patients with DM-2. However,
normal blood glucose levels were not reduced by chronic,
prophylactic treatment with AGL. AGL actually has only a
minor effect on individuals with normal blood glucose levels.
Administration of extremely high doses of AGL (100 mg/kg)
showed no effect on fasting plasma glucose or insulin levels
in normal mice (Lee et al., 2008), confirming that the effects of
AGL on insulin secretion and insulin resistance are depen-
dent in the presence of hyperglycemia.

Functional deterioration improved in both the chronic
AGL- and vehicle-treated groups on entering the chronic
phase, obliterating the initial difference between the groups.
Because the rate of passage of biological time correlates
inversely to [body weight]2, as represented by longevity and
heart/respiration rate (Calder, 1983), 15–30 min in mice is
regarded as from 30min to 1 h in rats (Yanamoto et al., 2004),
and 3–6 h in humans (Yanamoto et al., 2012). Seven days after
ischemia in mice can be translated into three months in
humans, a sufficient time for a mild-to-moderate neurologi-
cal deficit to improve. However, it is possible that the SND
scoring system may not be sensitive enough to detect subtle
differences in the chronic phase.

In the late reperfusion period, rCBF was higher in the AGL-
treated group (Fig. 3). We speculate that the brain damage
during ischemia was more severe in the vehicle group, which



Fig. 1 – Comparisons of cerebral infarction and SND scores after ischemia in the acute phase. (A) Representative images

of coronal sections (front views) of mouse brains 24 h after ischemia. (B) Quantification of volumes of infarcted lesions.

(C) Comparisons of SND scores in vehicle- and AGL (low, medium, high dose)-treated groups.
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brought on more severe cerebral edema during reperfusion,
and reduced the rCBF, as demonstrated in our previous
studies (Yamamoto et al., 2008, 2011). Although treatment
of mice with AGL may upregulate endothelial nitric oxide
synthase (eNOS) (Ban et al., 2008), rCBF was not increased
during ischemia.

In DM-2 rats, treatment with Ex-4 (0.1, 1 or 5 μg/kg, via
intraperitoneal injections, twice a day), before (for four
weeks) and after (for two or four weeks) the induction of
focal ischemia, reduced hyperglycemia and the volumes of
infarcted lesions in a dose-dependent manner (Darsalia et al.,
2012). In normal rats, prophylactic treatment with Ex-4
(0.5 μg/kg, via intraperitoneal injections, twice a day) for
seven days reduced volumes of infarct lesion, the extent of
neurological deficits, and also markers of oxidative stress
(Briyal et al., 2012). Recently, intravenous injection of Ex-4 (0.5
or 2.5 mg/kg, immediately, or 1 h after the induction of
reperfusion) reduced the volumes of infarcted lesions and



Fig. 2 – Infarcted lesions and the SND scores in the chronic phase. (A) Representative images of coronal sections of the mouse

brain in vehicle- or AGL-treated group, 7 days after ischemia. (B) Quantification of volumes of infarcted lesions. (C) SND

scores in AGL- (open circle) and vehicle-treated (closed circle) groups.n : p¼0.024, † : p¼0.026

Fig. 3 – Levels of rCBF during and after reperfusion at the

end of prophylactic treatment. During ischemia, the rCBF

was reduced to an equivalent level in both groups. After

reperfusion on releasing the neck clips, the rCBF recovered

fully in 5 min. A significant difference appeared during the

late reperfusion period (vehicle group: closed circle,

medium-dose AGL group: open circle). np¼0.01, nnp¼0.007

Fig. 4 – BDNF levels in the brain after the treatment with

medium-dose AGL or vehicle. Quantification of BDNF levels

in the cortex, thalamostriatum (thal.-stri.), the

hippocampus (hipp.), and the whole forebrain (forebrain).

Treatment with AGL significantly elevated BDNF levels in

the forebrain, including the cortex and thalamostriatum.
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the extent of functional deficits, without altering plasma
insulin or glucose levels, in non-diabetic C57BL/6 mice
(Teramoto et al., 2011).
The conflict between the finding with post hoc Ex-4
(Teramoto et al., 2011) and post hoc GLP treatment of focal
ischemia may be explained by the different conditions pre-
sent in the two sets of experiments: (1) A 100–1000 fold larger



Fig. 5 – Infarcted lesions and the SND scores after treatment with post hoc AGL. (A) Representative images of coronal sections

of the mouse brain in vehicle- or AGL (alogliptin)-treated group, 24 h after ischemia. (B) The volumes of infarcted lesions, 24 h

after, or seven days after ischemia. In the acute phase, infarcted volumes in the AGL-treated group were slightly smaller

compared to vehicle, without a significant difference. The difference diminished in the chronic phase. (C) The SND scores in

AGL- (open circle) and vehicle-treated (closed circle) groups. There was no significant difference between the groups for seven

days after ischemia.
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dose was used than was the case with effective prophylaxis
against ischemia using Ex-4 (Darsalia et al., 2012; Briyal et al.,
2012), with the same dose used for effective prophylaxis
against ischemia with AGL; (2) Ex-4 acts as a long-acting
analog of GLP-1, while AGL increases intrinsic GLP-1; (3) Ex-4
was given intravenously, in contrast to the intragastric
gavage used to administer AGL; (4) the intraluminal thread
insertion (ITI) method (a 60-min focal ischemia) was used to
assess volumes of infarcted lesions with Ex-4, but the three-
vessel occlusion (3-VO) method (a 15-min focal ischemia
limited in the cortex) was used with AGL. Considering the
difference in biological time, 15-min delay (plus the delay for
the transfer into the brain) after the onset in mice could be
translated into more than 3-h delay in humans. Further
investigations are needed, in which AGL is administered
immediately, or within 15 min after the onset of ischemia.

Ischemia induces abnormal release, from 5- to 50-fold
elevations, of glutamate and gamma-aminobutyric acid
(GABA) in the brain (Matsumoto et al., 1996). The enhanced
glutamate release has been reported to be neurotoxic
(Mattson, 2008), and the enhanced GABA release to be
neuroprotective (Pamenter et al., 2011; Zhou et al., 2008;
Costa et al., 2004). As regards the mechanism by which BDNF
protect the brain against cerebral ischemia, a chronic
increase in BDNF levels increases the number of GABAergic
synapses (Hong et al., 2008), and enhances the likelihood of
GABA release (Baldelli et al., 2005). Therefore, a chronic
increase in BDNF levels in the brain can act as a neuropro-
tectant by increasing GABA release during ischemia.

Regarding differential efficacy among the treated groups, a
medium dose of AGL alone – a dose equivalent to the
standard dose for treatment of human DM-2 – displayed an
evident reduction in volumes of infarcted lesions. Adminis-
tration of a DPP-4 inhibitor, sitagliptin, with an excessive dose
(100 mg/kg/day, i.e. 50–100 times larger than the effective
dose used for human DM-2) for 12 weeks, paradoxically
increased tau phosphorylation in the hippocampus of DM-2
rats (Kim et al., 2012). It has also been shown that excessive
BDNF levels impair learning and memory (Nakajo et al., 2008;
Yanamoto et al., 2008). Although the mechanism is unknown,
excessive doses may be ineffective or unsafe when DPP-4
inhibitors are used as neuroprotectants or a neurotrophins.
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Although AGL treatment for three weeks did not induce
significant weight loss in normal mice (p¼0.117), increased
BDNF in the brain has the ability to normalize excessive
appetite and obesity (Tsao et al., 2007; Nakagawa et al., 2003).
Further investigations are needed to clarify whether AGL
treatment may be a good choice for the risk reduction of
ischemic stroke in individuals who have obesity.

In summary, AGL might be useful as a neuroprotectant, or
an enhancer of BDNF production in the brain, aiming to halt
or minimize brain injury due to first-ever or recurrent
ischemic stroke.
4. Experimental procedures

This protocol of study was approved by the Animal Care and
Use Committee of the NCVC. Every effort was made to
minimize both the number of animals used and their suffer-
ing. In the assessment of infarcted lesions, BDNF levels in the
brain or rCBF, sample sizes were calculated to detect a 30–35%
alteration with 95% confidence considering the corresponding
mean and the standard deviation (S.D.) in our previous
studies (Yuan et al., 2009). We used computer-generated
randomization schedules for the randomization of experi-
mental animals. By using our three-vessel occlusion (3VO)-
technique for the induction of temporary focal ischemia,
there was no need to make selection criteria and exclude
animals (Yanamoto et al., 2003).

The induction of ischemia and the assessment of volumes of
infarcted lesions or neurological deficits were performed by a
trained neurosurgeon who was blind to the treatment. The drug
(or vehicle) administration and the monitoring of physiological
parameters (body weight and blood glucose) during the treat-
ment were performed by an independent investigator.

4.1. Analysis in the acute phase on the AGL treatment
performed before ischemia

Male C57BL/6 J mice (8–11 weeks old, Japan CLEA, Japan) were
randomly divided into the following four groups (n¼10/
group) for the administration of AGL (purchased from Takeda
Pharm. Co. Ltd., Japan) or vehicle. Doses were determined
based on the human clinical dose (Scott, 2010): Group I,
vehicle (saline); group II, low-dose AGL (7.5 μg/day¼0.25 mg/
kg/day); group III, medium-dose AGL (15 μg/day¼0.5 mg/kg/
day); and group IV, high-dose AGL (30 μg/day¼1.0 mg/kg/day).
Saline, or AGL dissolved in 0.2 ml saline was administered
once a day for three consecutive weeks via intragastric
gavage. After treatment, mice were subjected to the brain
surgery to induce temporary focal ischemia. Neurological
deficits and the volumes of infarcted lesions were analyzed
24 h after ischemia.

4.2. Analysis in the chronic phase on the prophylactic AGL
treatment

A second cohort of mice was randomly divided into the
following two groups: Group I, vehicle (saline); group II, AGL
(0.5 mg/kg/day)(n¼11/group), with a dose that was deter-
mined based on the results of the acute-phase analysis. The
timing and nature of the surgery that was used to induce
ischemia were exactly as above. Neurological deficits were
assessed daily, and the volumes of infarcted lesions were
analyzed seven days after ischemia.
4.3. Analysis on the AGL treatment post hoc

A third cohort of mice (n¼52) was randomly divided into the
following two groups): Group I, vehicle (saline); group II, AGL
(0.5 mg/kg/day). The administration of AGL or vehicle was
performed immediately after the induction of reperfusion
(after the insult of 15-min temporary focal ischemia as
described below), once via intragastric gavage. Neurological
deficits were assessed daily, and the volumes of infarcted
lesions were analyzed 24 h or seven days (n¼13/group) after
ischemia.
4.4. Induction of ischemia

Temporary, focal ischemia was produced in the left neocortex
using the 3VO technique (Yamamoto et al., 2003, 2008, 2011;
Nakajo et al., 2008). Briefly, the left middle cerebral artery
(MCA) at the location distal to the lenticlostiriate arteries, the
lateral edge of the olfactory tract, was cauterized. Bilateral
common carotid arteries (CCAs) were simultaneously clip-
occluded at the neck for 15 min, under surgical microscope
with halothane-inhalation anesthesia and the monitoring of
vital signs.
4.5. Physiologic parameters

During the anesthesia, rectal temperature was regulated
within the physiological range, at 3770.5 1C, before, during,
and after ischemia. Heart rate and mean blood pressure were
monitored via the proximal tail artery. Blood glucose levels
were analyzed at the same time during the day (from 11 to
12 A.M.).
4.6. Evaluation of neurological deficits

24 h (in the acute phase), or for 7 days (in the chronic phase),
after the induction of ischemia, the functional consequences
caused by ischemic stress and cerebral infarction were
examined according to our original stroke-induced neurolo-
gical deficit (SND) score (Yamamoto et al., 2001, 2011). Balance
in the body trunk while being lifted by the tail was graded
according to the following criteria: 0, no deficit (no twisting of
the body); 1, mild deficit (asymmetric twisting tendency of
the body); and 2, severe deficit (repeated asymmetric twisting
of the body). Motor function of the extremities while being
lifted by the tail was graded as follows: 0, no deficit (symme-
trical movement of the forelimbs); 1, mild deficit (intermittent
asymmetrical flexion of the forelimbs); and 2, severe deficit
(continuous asymmetrical flexion of the forelimbs). The SND
score (from 0 to 4) comprises the sum of the grades of the
balance in body trunk and motor function of extremities.
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4.7. Measurement of cerebral edema and infarcted lesion
volumes

The volumes of infarcted lesions were analyzed at 24 h (in the
acute phase), or seven days (in the chronic phase) after
ischemia. Mice were perfused transcardially with heparinized
PBS at 24 h or seven days after the induction of ischemia to
washout any blood components from the brain tissue. The
brain was removed and cut from the frontal tip into 1-mm
thick coronal slices. Viable tissue was stained red with 2%
2,3,5-triphenyltetrazolium chloride (TTC) (Bederson et al.,
1986), followed by fixation with 4% paraformaldehyde in
PBS. The infarcted lesions and total hemispheric areas of
each slice were measured by tracing the borders in a
computer-assisted image-analysis system WinROOF (Mitani
Co. Ltd.). In the acute phase alone, an edema index was
calculated as the volume of the left hemisphere divided by
the volume of the right hemisphere. The infarct index was
calculated as the infarction volume divided by the edema
index, which represents the actual infarcted lesion (dead
tissue) volume, excluding any enlargement due to
cerebral edema.

In the assessment of the chronic phase, the volume of
infarcted lesion was calculated as the volume of the right
(intact, residual) cortex minus the volume of the left (normal)
cortex, which includes the volume of acute necrosis plus
delayed cerebral atrophy (Yamamoto et al., 2011). We utilized
TTC method that visualizes survived cells both in the acute
and chronic phase for a chronological comparison, rather
than utilizing the cresyl violet method that stains survived
neurons. It was found that the brain tissue including degen-
erating and necrotic tissues shrank down to 66% of the
original volume, in average, after the dehydration procedure
needed in the cresyl violet method (Yanamoto et al., 1999).
Proliferated reactive astrocytes (gliosis) in the border zone of
focal ischemia, which is stained with glial fibrillary acidic
protein (GFAP) or TCC, was negligible in the analysis of
infarcted volumes in the cortex, because gliosis developed
primarily in the corpus callosum, under the cortex (Yana-
moto et al., 1999).

4.8. Determination of regional cerebral blood flow

A forth cohort of mice was randomly divided into the
following two groups: treated with medium-dose AGL; or
vehicle (N¼11/group). The reduction and recovery levels of
rCBF, before (control), during and after 3VO-ischemia were
monitored using the laser-Doppler blood flowmetry meter
TBF-LN1 (Unique Medical) (Yamamoto et al., 2011). The ROI
was set in the MCA territory peripheral to the ischemic core;
at 2 mm caudal and 1 mm dorsal to the occlusion point of the
MCA. The values were expressed as percentages of the pre-
ischemic baseline value in each animal.

4.9. Quantitation of BDNF level

In the cohort of mice treated with medium-dose AGL (N¼7),
or vehicle (N¼8), after trans-cardiac, pressure-regulated per-
fusion with PBS, cerebral neocortex, basal ganglia, and hip-
pocampus were removed and kept frozen at −80 1C till
analysis. The brain tissue was homogenized in buffer, and
the BDNF protein levels were determined with the two-site
sandwich ELISA kit (Emax Immunoassay System, Promega,
USA). BDNF levels were normalized by the amount of protein
in each sample. The protein concentration was measured
using a BCA Protein Assay kit (Thermo Scientific, USA). All
assays were performed in triplicate.

4.10. Statistical analysis

All data are presented as the means7standard deviation (S.
D.). One-way ANOVA with the post-hoc Holm-Sidak method
was applied to compare the variance within the different
parameters. The SND scores were examined by the non-
parametric Mann–Whitney test at each time point. A p-value
o0.05 was considered to be statistically significant.
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